Dynamics of Vibrio cholerae in a Typical Tropical Lake and Estuarine System: Potential of Remote Sensing for Risk Mapping

Author:

Anas AbdulazizORCID,Krishna KiranORCID,Vijayakumar Syamkumar,George GrinsonORCID,Menon Nandini,Kulk GemmaORCID,Chekidhenkuzhiyil Jasmin,Ciambelli Angelo,Kuttiyilmemuriyil Vikraman Hridya,Tharakan Balu,Koovapurath Useph Abdul Jaleel,Goult Elizabeth,Vengalil Jithin,Platt Trevor,Sathyendranath ShubhaORCID

Abstract

Vibrio cholerae, the bacterium responsible for the disease cholera, is a naturally-occurring bacterium, commonly found in many natural tropical water bodies. In the context of the U.N. Sustainable Development Goals (SDG) targets on health (Goal 3), water quality (Goal 6), life under water (Goal 14), and clean water and sanitation (Goal 6), which aim to “ensure availability and sustainable management of water and sanitation for all”, we investigated the environmental reservoirs of V. cholerae in Vembanad Lake, the largest lake in Kerala (India), where cholera is endemic. The response of environmental reservoirs of V. cholerae to variability in essential climate variables may play a pivotal role in determining the quality of natural water resources, and whether they might be safe for human consumption or not. The hydrodynamics of Vembanad Lake, and the man-made barrier that divides the lake, resulted in spatial and temporal variability in salinity (1–32 psu) and temperature (23 to 36 °C). The higher ends of this salinity and temperature ranges fall outside the preferred growth conditions for V. cholerae reported in the literature. The bacteria were associated with filtered water as well as with phyto- and zooplankton in the lake. Their association with benthic organisms and sediments was poor to nil. The prevalence of high laminarinase and chitinase enzyme expression (more than 50 µgmL−1 min−1) among V. cholerae could underlie their high association with phyto- and zooplankton. Furthermore, the diversity in the phytoplankton community in the lake, with dominance of genera such as Skeletonema sp., Microcystis sp., Aulacoseira sp., and Anabaena sp., which changed with location and season, and associated changes in the zooplankton community, could also have affected the dynamics of the bacteria in the lake. The probability of presence or absence of V. cholerae could be expressed as a function of chlorophyll concentration in the water, which suggests that risk maps for the entire lake can be generated using satellite-derived chlorophyll data. In situ observations and satellite-based extrapolations suggest that the risks from environmental V. cholerae in the lake can be quite high (with probability in the range of 0.5 to 1) everywhere in the lake, but higher values are encountered more frequently in the southern part of the lake. Remote sensing has an important role to play in meeting SDG goals related to health, water quality and life under water, as demonstrated in this example related to cholera.

Funder

Department of Science and Technology, Ministry of Science and Technology, India

Natural Environment Research Council

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference64 articles.

1. WHO Updates Fact Sheet on Cholera (17 January 2019)https://www.who.int/news-room/fact-sheets/detail/cholera

2. Tracking Cholera in Coastal Regions Using Satellite Observations1

3. Environmental Reservoirs of Vibrio cholerae: Challenges and Opportunities for Ocean-Color Remote Sensing

4. Vibrio spp. infections

5. Ending Cholera: A Global Road Map to 2030,2017

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3