Author:
Liu Chih-Yi,Lai Chun-Hung,Lin Chao-Cheng,Yang Chih-Peng
Abstract
A Cu/SiO2/Pt structure is usually used to study the resistive memory properties of an electrochemical resistive random access memory. It can be reversibly switched between low- and high-resistance states by using DC voltages in the atmosphere. However, its resistive switching behavior disappears in a vaporless environment because no conducting filaments can be formed within the Cu/SiO2/Pt structure. This study inserted a graphene oxide (GO) layer to fabricate a Cu/GO/SiO2/Pt structure that could be resistively switched in a vaporless environment. The X-ray photoelectron spectra depth profile of the Cu/GO/SiO2/Pt structure showed that oxygen-related groups of the GO film reacted with the Cu electrode. The GO film assisted Cu ionization in a vaporless environment, and Cu ions could migrate in an electrical field to the Pt electrode. Cu conducting filaments were formed and ruptured by different polarity voltages, and the resistance of the Cu/GO/SiO2/Pt structure could be reversibly switched in a vaporless environment. A schematic model was proposed to explain the switching mechanisms in the atmosphere and a vaporless environment.
Funder
Ministry of Science and Technology, Taiwan
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献