Evaluation of Deep Learning Neural Networks for Surface Roughness Prediction Using Vibration Signal Analysis

Author:

Lin Wan-Ju,Lo Shih-Hsuan,Young Hong-Tsu,Hung Che-Lun

Abstract

The use of surface roughness (Ra) to indicate product quality in the milling process in an intelligent monitoring system applied in-process has been developing. From the considerations of convenient installation and cost-effectiveness, accelerator vibration signals combined with deep learning predictive models for predicting surface roughness is a potential tool. In this paper, three models, namely, Fast Fourier Transform-Deep Neural Networks (FFT-DNN), Fast Fourier Transform Long Short Term Memory Network (FFT-LSTM), and one-dimensional convolutional neural network (1-D CNN), are used to explore the training and prediction performances. Feature extraction plays an important role in the training and predicting results. FFT and the one-dimensional convolution filter, known as 1-D CNN, are employed to extract vibration signals’ raw data. The results show the following: (1) the LSTM model presents the temporal modeling ability to achieve a good performance at higher Ra value and (2) 1-D CNN, which is better at extracting features, exhibits highly accurate prediction performance at lower Ra ranges. Based on the results, vibration signals combined with a deep learning predictive model could be applied to predict the surface roughness in the milling process. Based on this experimental study, the use of prediction of the surface roughness via vibration signals using FFT-LSTM or 1-D CNN is recommended to develop an intelligent system.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3