Abstract
The planar induction heating possesses more difficulties in industry application compared with traditional spiral induction coils in mostly heat treatment processes. Numerical approaches are adopted in the power distribution and temperature prediction during the induction heating process, which has a relatively low computational efficiency. In this work, an analytical calculation model of the planar induction heating with magnetic flux concentrator is investigated based on the uniform moving heating source. In this model, the power density in the surface of the workpiece induced by coils is calculated and applied into the analytical model of the temperature calculation using a uniform moving heat source. Planar induction heating tests are conducted under various induction coil parameters and the corresponding temperature evolution is obtained by the infrared imaging device NEC R300W2-NNU and the thermocouples. The final surface temperature prediction is compared to the finite element simulation results and experimental data. The analytical results show a good match with the finite element simulation and the experimental results, and the errors are in reasonable range and acceptable. The analytical model can compute the temperature distribution directly and the computational time is much less than the finite element method. Therefore, the temperature prediction method in this work has the advantage of less experimental and computational complexity, which can extend the analytical modeling methodology in induction heating to a broader application.
Funder
National Science Foundation of China
Youth Foundation of Taiyuan University of Technology, China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献