Automatic Microaneurysms Detection for Early Diagnosis of Diabetic Retinopathy Using Improved Discrete Particle Swarm Optimization

Author:

Bhimavarapu Usharani,Battineni GopiORCID

Abstract

Diabetic retinopathy (DR) is one of the most important microvascular complications associated with diabetes mellitus. The early signs of DR are microaneurysms, which can lead to complete vision loss. The detection of DR at an early stage can help to avoid non-reversible blindness. To do this, we incorporated fuzzy logic techniques into digital image processing to conduct effective detection. The digital fundus images were segmented using particle swarm optimization to identify microaneurysms. The particle swarm optimization clustering combined the membership functions by grouping the high similarity data into clusters. Model testing was conducted on the publicly available dataset called DIARETDB0, and image segmentation was done by probability-based (PBPSO) clustering algorithms. Different fuzzy models were applied and the outcomes were compared with our probability discrete particle swarm optimization algorithm. The results revealed that the proposed PSO algorithm achieved an accuracy of 99.9% in the early detection of DR.

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detection and Classification of Diabetic Retinopathy by Fuzzy Based Decision-Making System;2023 2nd International Conference on Automation, Computing and Renewable Systems (ICACRS);2023-12-11

2. Dynamic Coati Optimization Algorithm for Biomedical Classification Tasks;Computers in Biology and Medicine;2023-09

3. A deep-learning enhanced algorithm for the automated detection of diabetic retinopathy;International Journal of System Assurance Engineering and Management;2023-08-04

4. How does artificial intelligence impact digital healthcare initiatives? A review of AI applications in dental healthcare;International Journal of Information Management Data Insights;2023-04

5. Classification and Segmentation of Diabetic Retinopathy: A Systemic Review;Applied Sciences;2023-02-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3