Real-Time Small Drones Detection Based on Pruned YOLOv4

Author:

Liu HansenORCID,Fan Kuangang,Ouyang QinghuaORCID,Li Na

Abstract

To address the threat of drones intruding into high-security areas, the real-time detection of drones is urgently required to protect these areas. There are two main difficulties in real-time detection of drones. One of them is that the drones move quickly, which leads to requiring faster detectors. Another problem is that small drones are difficult to detect. In this paper, firstly, we achieve high detection accuracy by evaluating three state-of-the-art object detection methods: RetinaNet, FCOS, YOLOv3 and YOLOv4. Then, to address the first problem, we prune the convolutional channel and shortcut layer of YOLOv4 to develop thinner and shallower models. Furthermore, to improve the accuracy of small drone detection, we implement a special augmentation for small object detection by copying and pasting small drones. Experimental results verify that compared to YOLOv4, our pruned-YOLOv4 model, with 0.8 channel prune rate and 24 layers prune, achieves 90.5% mAP and its processing speed is increased by 60.4%. Additionally, after small object augmentation, the precision and recall of the pruned-YOLOv4 almost increases by 22.8% and 12.7%, respectively. Experiment results verify that our pruned-YOLOv4 is an effective and accurate approach for drone detection.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3