Abstract
Portable radiation detectors are widely used in environmental radiation detection and medical imaging due to their portability feature, high detection efficiency, and large field of view. Lutetium-yttrium oxyorthosilicate (LYSO) is a widely used scintillator in gamma radiation detection. However, the structure and the arrangement of scintillators limit the sensitivity and detection accuracy of these radiation detectors. In this study, a novel portable sensor based on a monolithic LYSO ring was developed for the detection of environmental radiation through simulation, followed by construction and assessments. Monte Carlo simulations were utilized to prove the detection of gamma rays at 511 keV by the developed sensor. The simulations data, including energy resolutions, decoding errors, and sensitivity, showed good potential for the detection of gamma rays by the as-obtained sensor. The experimental results using the VA method revealed decoding errors in the energy window width of 50 keV less than 2°. The average error was estimated at 0.67°, a sufficient value for the detection of gamma radiation. In sum, the proposed radiation sensor appears promising for the construction of high-performance radiation detectors and systems.
Funder
National Natural Science Foundation of China
Higher Education Discipline Innovation Project
Science and Technology Foundation of Shenzhen City
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献