Penalized Bayesian Approach-Based Variable Selection for Economic Forecasting

Author:

Pacifico Antonio1ORCID,Pilone Daniela2ORCID

Affiliation:

1. Department of Economics and Law, University of Macerata, Piazza Strambi 1, 62100 Macerata, Italy

2. Department of Economics and Finance, LUISS Guido Carli University, Viale Romania 32, 00198 Rome, Italy

Abstract

This paper proposes a penalized Bayesian computational algorithm as an improvement to the LASSO approach for economic forecasting in multivariate time series. Methodologically, a weighted variable selection procedure is involved in handling high-dimensional and highly correlated data, reduce the dimensionality of the model and parameter space, and then select a promising subset of predictors affecting the outcomes. It is weighted because of two auxiliary penalty terms involved in prior specifications and posterior distributions. The empirical example addresses the issue of pandemic disease prediction and the effects on economic development. It builds on a large set of European and non-European regions to also investigate cross-unit heterogeneity and interdependency. According to the estimation results, density forecasts are conducted to highlight how the promising subset of covariates would help to predict potential contagion due to pandemic diseases. Policy issues are also discussed.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3