Deep Reinforcement Learning for Articulatory Synthesis in a Vowel-to-Vowel Imitation Task

Author:

Shitov Denis1ORCID,Pirogova Elena1ORCID,Wysocki Tadeusz A.23ORCID,Lech Margaret1ORCID

Affiliation:

1. School of Engineering, RMIT University, Melbourne 3000, Australia

2. Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA

3. Faculty of Telecommunications, Computer Science and Electrical Engineering, Bydgoszcz University of Science and Technology, 85-796 Bydgoszcz, Poland

Abstract

Articulatory synthesis is one of the approaches used for modeling human speech production. In this study, we propose a model-based algorithm for learning the policy to control the vocal tract of the articulatory synthesizer in a vowel-to-vowel imitation task. Our method does not require external training data, since the policy is learned through interactions with the vocal tract model. To improve the sample efficiency of the learning, we trained the model of speech production dynamics simultaneously with the policy. The policy was trained in a supervised way using predictions of the model of speech production dynamics. To stabilize the training, early stopping was incorporated into the algorithm. Additionally, we extracted acoustic features using an acoustic word embedding (AWE) model. This model was trained to discriminate between different words and to enable compact encoding of acoustics while preserving contextual information of the input. Our preliminary experiments showed that introducing this AWE model was crucial to guide the policy toward a near-optimal solution. The acoustic embeddings, obtained using the proposed approach, were revealed to be useful when applied as inputs to the policy and the model of speech production dynamics.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference29 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3