Author:
Wang Yanfei,Wu Xuanpei,Wu Weijie
Abstract
Effects of microstructural changes induced by prestraining on hydrogen transport and hydrogen embrittlement (HE) of austenitic stainless steels were studied by hydrogen precharging and tensile testing. Prestrains higher than 20% at 20 °C significantly enhance the HE of 304L steel, as they induce severe α′ martensite transformation, accelerating hydrogen transport and hydrogen entry during subsequent hydrogen exposure. In contrast, 304L steel prestrained at 50 and 80 °C and 316L steel prestrained at 20 °C exhibit less HE, due to less α′ after prestraining. The increase of dislocations after prestraining has a negligible influence on apparent hydrogen diffusivity compared with pre-existing α′. The deformation twins in heavily prestrained 304L steel can modify HE mechanism by assisting intergranular (IG) fracture. Regardless of temperature and prestrain level, HE and apparent diffusivity ( D app ) increase monotonously with α′ volume fraction ( f α ′ ). D app can be described as log D app = log ( D α ′ s α ′ / s γ ) + log [ f α ′ / ( 1 − f α ′ ) ] for 10 % < f α ′ < 90 % , with D α ′ is diffusivity in α′, s α ′ and s γ are solubility in α′ and austenite, respectively. The two equations can also be applied to these more typical duplex materials containing both BCC and FCC phases.
Subject
General Materials Science,Metals and Alloys
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献