Contact Fatigue Failure Analysis of Helical Gears with Non-Entire Tooth Meshing Tests

Author:

Zhao Fuqiang,Ding Xiaofeng,Fan Xiaoyu,Cui Renjie,Li Yugui,Wang Tie

Abstract

This study presents an experimental approach based on partial tooth meshing contact fatigue with constant amplitude and different lengths of load cycles. To achieve this, 20CrH helical gears were considered, limiting the region of interest to one-third of the tooth to accelerate crack initiation and propagation. Different factors, such as number of fatigue cycles, tooth flank morphology, residual stress, hardness, and microstructure evolution under fatigue, were considered. The ultimate goal was to relate these variations with the observed failure modes. The results showed that with increasing cycle number, the residual stress at the same position in the meshing zone of the tooth flank increased first and then decreased. The residual stress values at the lower position of the pitch circle were larger than that of the addendum and dedendum. After cyclic loading, the content of the twin martensite within the microstructure below the pitch circle decreased and the corresponding hardness value of the tooth flank was reduced. After long-term cyclic loading, the precipitated phases aggregated and grew and the discontinuous distribution hindered the grain boundary slip. The dislocation density increased, and the pile-up of dislocation resulted in stress concentration at the grain boundary and the phase boundary, which induced the initiation of fatigue crack of the tooth flank.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3