State of Health Assessment for Lithium-Ion Batteries Using Incremental Energy Analysis and Bidirectional Long Short-Term Memory

Author:

Li Yanmei1,Luo Laijin1,Zhang Chaolong2ORCID,Liu Huihan1ORCID

Affiliation:

1. School of Electronic Engineering and Intelligent Manufacturing, Anqing Normal University, Anqing 246011, China

2. College of Intelligent Science and Control Engineering, Jinling Institute of Technology, Nanjing 211169, China

Abstract

The state of health (SOH) of a lithium ion battery is critical to the safe operation of such batteries in electric vehicles (EVs). However, the regeneration phenomenon of battery capacity has a significant impact on the accuracy of SOH estimation. To overcome this difficulty, in this paper we propose a method for estimating battery SOH based on incremental energy analysis (IEA) and bidirectional long short-term memory (BiLSTM). First, the IE curve that effectively describes the complex chemical characteristics of the battery is obtained according to the energy data calculated from the constant current (CC) charging phase. Then, the relationship between the IE curve and battery SOH degradation characteristics is analyzed and the peak height of the IE curve is extracted as the aging characteristic of the battery. Further, Pearson correlation analysis is utilized to determine the linear correlation between the proposed aging characteristics and the battery SOH. Finally, BiLSTM is employed to capture the underlying mapping relationship between peak characteristics and SOH, and a battery SOH estimation model is developed. The results demonstrate that the proposed method is able to estimate battery SOH under two different charging conditions with a root mean square error less than 0.5% and coefficient of determination above 98%. Additionally, the method is combined with Pearson correlation analysis to select an aging characteristic with high correlation, reducing the required data input and computational burden.

Funder

Graduate Innovation and Entrepreneurship Project of Anqing Normal University through Anhui Provincial

Publisher

MDPI AG

Subject

Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3