Low SNR Multi-Emitter Signal Sorting and Recognition Method Based on Low-Order Cyclic Statistics CWD Time-Frequency Images and the YOLOv5 Deep Learning Model

Author:

Huang Dingkun,Yan Xiaopeng,Hao XinhongORCID,Dai Jian,Wang Xinwei

Abstract

It is difficult for traditional signal-recognition methods to effectively classify and identify multiple emitter signals in a low SNR environment. This paper proposes a multi-emitter signal-feature-sorting and recognition method based on low-order cyclic statistics CWD time-frequency images and the YOLOv5 deep network model, which can quickly dissociate, label, and sort the multi-emitter signal features in the time-frequency domain under a low SNR environment. First, the denoised signal is extracted based on the low-order cyclic statistics of the typical modulation types of radiation source signals. Second, the time-frequency graph of multisource signals was obtained through CWD time-frequency analysis. The cyclic frequency was controlled to balance the noise suppression effect and operation time to achieve noise suppression of multisource signals at a low SNR. Finally, the YOLOv5s deep network model is used as a classifier to sort and identify the received signals from multiple radiation sources. The method proposed in this paper has high real-time performance. It can identify the radiation source signals of different modulation types with high accuracy under the condition of a low SNR.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference30 articles.

1. Research on VHF Band Signal Modulation Classification and Recognition Methods Based on Algorithm of First-Order Cyclic Moment;Yang;Telecom Sci.,2014

2. Modulation recognition method based on convolutional neural network and cyclic spectrum images;Lin;J. Terahertz Sci. Electron. Inf.,2021

3. Accurate LPI Radar Waveform Recognition With CWD-TFA for Deep Convolutional Network

4. Cyclostationary Signals Analysis Methods Based on High-Dimensional Space Transformation Under Impulsive Noise

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3