Analysis of the Overpressure Fields in a Shock Tube with Multi-Point Initiation

Author:

Chen Zhuo12,Ren Huiqi2,Zhao Qiang2,Zhou Songbai2,Long Zhilin3,Liu Wei2ORCID

Affiliation:

1. School of Mechanical Engineering and Mechanics, Xiangtan University, Xiangtan 411105, China

2. Defense Engineering Institute, Academy of Military Sciences, People’s Liberation Army of China, Luoyang 471023, China

3. College of Civil Engineering, Xiangtan University, Xiangtan 411105, China

Abstract

Shock tubes can carry out dynamic mechanical impact tests on civil engineering structures. The current shock tubes mostly use an explosion with aggregate charge to obtain shock waves. Limited effort has been made to study the overpressure field in shock tubes with multi-point initiation. In this paper, the overpressure fields in a shock tube under the conditions of single-point initiation, multi-point simultaneous initiation, and multi-point delayed initiation have been analyzed by combining experiments and numerical simulations. The numerical results match well with the experimental data, which indicates that the computational model and method used can accurately simulate the blast flow field in a shock tube. For the same charge mass, the peak overpressure at the exit of the shock tube with the multi-point simultaneous initiation is smaller than that with single-point initiation. As the shock waves are focused on the wall, the maximum overpressure on the wall of the explosion chamber near the explosion zone is not reduced. The maximum overpressure on the wall of the explosion chamber can be effectively reduced by a six-point delayed initiation. When the interval time is less than 10 ms, the peak overpressure at the nozzle outlet decreases linearly with the interval of the explosion. When the interval time is greater than 10 ms, the overpressure peak remains unchanged.

Funder

Postgraduate Scientific Research Innovation Project of Xiangtan University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3