Bootstrap Approximation of Model Selection Probabilities for Multimodel Inference Frameworks

Author:

Dajles Andres1ORCID,Cavanaugh Joseph1ORCID

Affiliation:

1. Department of Biostatistics, University of Iowa, 145 N. Riverside Drive, Iowa City, IA 52242, USA

Abstract

Most statistical modeling applications involve the consideration of a candidate collection of models based on various sets of explanatory variables. The candidate models may also differ in terms of the structural formulations for the systematic component and the posited probability distributions for the random component. A common practice is to use an information criterion to select a model from the collection that provides an optimal balance between fidelity to the data and parsimony. The analyst then typically proceeds as if the chosen model was the only model ever considered. However, such a practice fails to account for the variability inherent in the model selection process, which can lead to inappropriate inferential results and conclusions. In recent years, inferential methods have been proposed for multimodel frameworks that attempt to provide an appropriate accounting of modeling uncertainty. In the frequentist paradigm, such methods should ideally involve model selection probabilities, i.e., the relative frequencies of selection for each candidate model based on repeated sampling. Model selection probabilities can be conveniently approximated through bootstrapping. When the Akaike information criterion is employed, Akaike weights are also commonly used as a surrogate for selection probabilities. In this work, we show that the conventional bootstrap approach for approximating model selection probabilities is impacted by bias. We propose a simple correction to adjust for this bias. We also argue that Akaike weights do not provide adequate approximations for selection probabilities, although they do provide a crude gauge of model plausibility.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3