Pangenome-Scale Mathematical Modelling of ANAMMOX Bacteria Metabolism

Author:

Bielski Roman G.1ORCID,Islam M. Ahsanul1ORCID

Affiliation:

1. Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, Leicestershire, UK

Abstract

Removal of fixed nitrogen compounds such as ammonium and nitrite from wastewater is of critical importance for balancing the nitrogen cycle and protecting aquatic environments from eutrophication. ANaerobic AMMonium OXidising (ANAMMOX) bacteria have recently been employed for fixed nitrogen removal purposes in wastewater treatment processes. These specialised bacteria convert ammonium and nitrite into nitrogen gas anaerobically, thereby reducing the amount of energy required for aeration in conventional wastewater treatment processes. However, slow growth rates of ANAMMOX remain a major obstacle towards their widespread use in industrial wastewater treatment processes. Thus, a pangenome-scale, constraint-based metabolic model, iRB399, of ANAMMOX bacteria has been developed to design strategies for accelerating their growth. The main metabolic limitation was identified in the energy metabolism of these bacteria, concerning the production of ATP. The extremely low efficiency of the electron transport chain combined with very high growth-associated maintenance energy is likely to be responsible for the slow growth of ANAMMOX. However, different ANAMMOX species were found to conserve energy using a variety of different redox couples, and the modelling simulations revealed their comparative advantages under different growth conditions. iRB399 also identified dispensable catabolic reactions that have demonstrably beneficial effects on enhancing the growth rates of ANAMMOX bacteria. Thus, the pangenome-scale model will not only help identify and overcome metabolic limitations of ANNAMOX bacteria, but also provide a valuable resource for designing efficient ANNAMOX-based wastewater treatment processes.

Funder

Loughborough University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3