Mechanical Properties and Durability of Composite Cement Pastes Containing Phase-Change Materials and Nanosilica

Author:

Ziga-Carbarín Javier12,Gómez-Zamorano Lauren Y.1ORCID,Cruz-López Arquímedes3ORCID,Pushpan Soorya1,Vázquez-Rodríguez Sofía1,Balonis Magdalena4

Affiliation:

1. Programa Doctoral en Ingeniería de Materiales, Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Ave. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico

2. Departamento de Tecnología del Concreto, Facultad de Ingeniería Civil, Universidad Autónoma de Nuevo León, Ave. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico

3. Departamento de Ingeniería Ambiental, Facultad de Ingeniería Civil, Universidad Autónoma de Nuevo León, Ave. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico

4. Department of Materials Science and Engineering, University of California Los Angeles (UCLA), 410 Westwood Plaza, 2121K Engineering V, Los Angeles, CA 90095, USA

Abstract

Escalating global surface temperatures are highlighting the urgent need for energy-saving solutions. Phase-change materials (PCMs) have emerged as a promising avenue for enhancing thermal comfort in the construction sector. This study assessed the impact of incorporating PCMs ranging from 1% to 10% by mass into composite Portland cement partially replaced by fly ash (FA) and nanosilica particles (NS). Mechanical and electrochemical techniques were utilized to evaluate composite cements. The results indicate that the presence of PCMs delayed cement hydration, acting as a filler without chemically interacting within the composite. The combination of FA and PCMs reduced compressive strength at early ages, while thermal conductivity decreased after 90 days due to the melting point and the latent heat of PCMs. Samples with FA and NS showed a significant reduction in the CO2 penetration, attributed to their pozzolanic and microfiller effects, as well as reduced water absorption due to the non-absorptive nature of PCMs. Nitrogen physisorption confirmed structural changes in the cement matrix. Additionally, electrical resistivity and thermal behavior assessments revealed that PCM-containing samples could reduce temperatures by an average of 4 °C. This suggested that PCMs could be a viable alternative for materials with thermal insulation capacity, thereby contributing to energy efficiency in the construction sector.

Funder

Universidad Autónoma de Nuevo León-PROACTI-2023

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3