Digital Image Correlation-Based Investigation of the Shear Performance of Connection Systems of Assembled Bamboo Scrimber–Lightweight Concrete Composite Beams

Author:

Wang Zhiyuan1,Wang Feng1,Liu Huihui1

Affiliation:

1. School of Management Science and Engineering, Anhui University of Finance and Economics, Bengbu 233041, China

Abstract

To investigate the shear performance of assembled bamboo scrimber (BS)-lightweight concrete (LC) connection systems, three groups of nine BS-LC shear connections were fabricated in this work using BS, LC, dowels, and grout. The experimental parameters included the dowel diameter and fabrication process (cast-in-place vs. assembly). Push-out tests were conducted on the specimens, and traditional linear variable displacement transducer (LVDT) measurements and the advanced digital image correlation (DIC) technique were employed to determine performance indicators such as the cross-section slip of composite members. Subsequently, the method for calculating the shear capacity of assembled BS-LC connection systems was theoretically analyzed. The research results showed that the load-slip curves measured by DIC were highly correlated with those measured by LVDT, thus, validating the reliability of the DIC data. According to the DIC data, the variations in slip of the shear connection over the interface height were further analyzed. An equation for calculating the shear capacity of dowel shear connectors was proposed based on theoretical analysis with comprehensive consideration of the experimental indicators such as the failure mode, load-slip curve, shear stiffness, and shear capacity of the specimens. The theoretical calculation values were in good agreement with the experimental results.

Funder

the Natural Science Foundation of the Educational Committee of Anhui Province, China

Publisher

MDPI AG

Reference32 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3