Analysis of the Microstructure and Mechanical Performance of Resistance Spot-Welding of Ti6Al4V to DP600 Steel Using Copper/Gold Cold-Sprayed Interlayers

Author:

Szwajka Krzysztof1ORCID,Zielińska-Szwajka Joanna2ORCID,Szewczyk Marek1,Mezher Marwan T.34ORCID,Trzepieciński Tomasz5ORCID

Affiliation:

1. Department of Integrated Design and Tribology Systems, Faculty of Mechanics and Technology, Rzeszow University of Technology, ul. Kwiatkowskiego 4, 37-450 Stalowa Wola, Poland

2. Department of Component Manufacturing and Production Organization, Faculty of Mechanics and Technology, Rzeszow University of Technology, ul. Kwiatkowskiego 4, 37-450 Stalowa Wola, Poland

3. Departamento de Deseño na Enxeñaría, Universidade de Vigo, 36310 Vigo, Spain

4. Institute of Applied Arts, Middle Technical University, Baghdad 10074, Iraq

5. Department of Manufacturing Processes and Production Engineering, Rzeszow University of Technology, al. Powstancow Warszawy 8, 35-959 Rzeszow, Poland

Abstract

In this article, an attempt was made to join DP600 steel and Ti6Al4V titanium alloy sheets by resistance spot-welding (RSW) using an interlayer in the form of Cu and Au layers fabricated through the cold-spraying process. The welded joints obtained by RSW without an interlayer were also considered. The influence of Cu and Au as an interlayer on the resulting microstructure as well as mechanical properties (shear force and microhardness) of the joints were determined. A typical type of failure of Ti6Al4V/DP600 joints produced without the use of an interlayer is brittle fracture. The microstructure of the resulting joint consisted mainly of the intermetallic phases FeTi and Fe2Ti. The microstructure of the Ti6Al4V/Au/DP600 joint contained the intermetallic phases Ti3Au, TiAu, and TiAu4. The intermetallic phases TiCu and FeCu were found in the microstructure of the Ti6Al4V/Cu/DP600 joint. The maximum tensile/shear stress was 109.46 MPa, which is more than three times higher than for a welded joint fabricated without the use of Cu or Au interlayers. It has been observed that some alloying elements, such as Fe, can lower the martensitic transformation temperature, and some, such as Au, can increase the martensitic transformation temperature.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3