Analysis of Bending Deformation and Stress of 6063-T5 Aluminum Alloy Multi-Cavity Tube Filled with Liquid

Author:

Zhang Xinlong1,Jiang Zhaosong1,Zhao Shuang1,Xie Xiaodong1,Xiao Jiang1,Liu Xueyan1,Wu Zhe1,Zhang Yang2ORCID

Affiliation:

1. College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China

2. College of Science, Northeast Forestry University, Harbin 150040, China

Abstract

The production of aluminum alloy multi-lumen tubes primarily involves hot bending formation, a process where controlling thermal deformation quality is difficult. Specifically, the inner cavity wall of the tube is prone to bending instability defects under the bending stress field. To address these challenges in the bending deformation of aluminum alloy multi-lumen tubes, a multi-lumen liquid-filled bypass forming method is proposed in this paper. This study focuses on the 6063-T5 aluminum alloy double-lumen tube as the research object. The liquid-filled bending deformation behavior of the aluminum alloy double-lumen tube was investigated, and the deformation theory of the aluminum alloy double-lumen tube was studied. Through experimental and numerical simulation methods, the influence of support internal pressure, bending radius, and tube wall thickness on the liquid-filled bending deformation behavior of the double-lumen tube was examined. The results indicate that when the value of internal pressure was 7.5 MPa, the straightening of the outer wall was improved by 2.51%, the thinning rate of wall thickness was minimized, and the internal concave defect was effectively suppressed. The liquid-filled bending method provides a promising new approach for the integrated bending and forming of multi-lumen tubes.

Funder

Fundamental Research Funds for the Central Universities through Grant

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3