FEM-Based Conductive Heat Transfer Analytical Description of Solidification Rate and Temperature Gradient during Lateral Laser Beam Oscillation Welding of Aluminum Alloy

Author:

Cheon Jason1,Kim Cheolhee2ORCID,Kang Sanghoon13,Kang Minjung1ORCID

Affiliation:

1. Flexible Manufacturing R&D Department, Korea Institute of Industrial Technology, Incheon 21999, Republic of Korea

2. Department of Mechanical and Materials Engineering, Portland State University, Portland, OR 97201, USA

3. School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea

Abstract

This study investigates the feasibility of utilizing the finite element method (FEM)-based conductive heat transfer (CHT) analysis simulation to determine temperature gradients and solidification rates at the solid–liquid interface during laser beam oscillation welding. By comparing experimental observations with FEM-based CHT analysis, the underlying microstructural evolution and grain formation during welding were examined. FEM-based CHT enables the calculation of temperature gradients (G) and solidification rates (R), offering insights into the formation of equiaxed structures, which are crucial for suppressing hot cracking. Columnar-to-equiaxed structure transition thresholds, such as G/R and G3/R, accurately predict the emergence of fully equiaxed grain structures, validated by electron backscatter diffraction. This research provides valuable insights into temperature gradients and solidification rates in oscillation welding, guiding process design for achieving refined equiaxed structures and minimizing hot cracks.

Funder

MOTIE

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3