Learning Motion Constraint-Based Spatio-Temporal Networks for Infrared Dim Target Detections

Author:

Li Jie,Liu Pengxi,Huang Xiayang,Cui Wennan,Zhang Tao

Abstract

Efficient infrared dim object detection has been challenged by low signal-to-noise ratios (SNRs). Traditional methods rely on the gradient difference and fixed-parameter model. These methods fail to adapt to sophisticated and variable situations in the real world. To tackle the issue, a deep learning method based on the spatio-temporal network is proposed in this paper. The model is established by the Convolutional Long Short-Term Memory cell (Conv-LSTM) and the 3D Convolution cell (3D-Conv). It is trained to learn the motion constraint of moving targets (spatio-temporal constraint module, called STM) and to fuse the multiscale local feature between the target and background (deep spatial features module, called DFM). In addition, a variable interval search module (state-aware module, called STAM) is added to the inference. The submodule decides to conduct a global search for images only if the target is lost due to fast motion, uncertain obstruction, and frame loss. Comprehensive experiments indicate that the proposed method achieves better performance over all baseline methods. On the mid-wave infrared datasets collected by the authors, the proposed method achieves a 95.87% detection rate. The SNR of the dataset is around 1–3 dB, and the background of the sequence includes sky, asphalt road, and buildings.

Funder

National Defense Key Laboratory of Science and Technology of Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3