Long-Term Deformations and Mechanical Properties of Fine Recycled Aggregate Earth Concrete

Author:

Fardoun HassanORCID,Saliba JacquelineORCID,Coureau Jean-Luc,Cointe Alain,Saiyouri Nadia

Abstract

Earth-based materials are currently receiving high attention, as they are considered as sustainable. In addition, the reuse of waste materials and more particularly recycled aggregates can boost circular economy while reducing landfilling and mineral resource depletion. Incorporating recycled aggregates in earth concrete can be an innovative way to valorize them. However, investigations are required concerning their long-term behavior. Such an aspect is more important when fine recycled aggregates are considered. In this paper, the vulnerability to long term deformations of natural sand (NS) and recycled sand (RS) earth concrete mixtures is examined under real exposure conditions. Autogenous shrinkage, drying shrinkage, basic creep and drying creep of the different mixtures were monitored for a period of two months. Specimens were then subjected to compressive tests in order to evaluate their residual strength. Furthermore, the destructive tests were monitored in parallel with the acoustic emission (AE) technique. The results show an increase in the rate of drying creep and shrinkage for RS earth concrete mixtures. In addition, NS and RS earth concrete mixtures subjected to drying, with and without loading, reported a strength development in comparison to the reference mixtures. However, the Young’s modulus reported its lowest value for drying shrinkage of both mixtures. Regarding the AE technique, the distribution of its activity reflected the higher rate of damage of dried specimens in the pre-peak region.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3