Study of Electrochemical Properties of Compared Indigo for Metal–Semiconductor–Metal Diode

Author:

Saikhao Laksanawadee,Thasnas Natakorn,Supannarach Sarawut,Kamuang Settakorn,Ratanabuntha Tharin,Siritaratiwat Apirat,Sriwannarat WaratORCID

Abstract

Indigo blue was discovered as a semiconductor material because of its organic semiconductor properties. This paper shows a primary study of the electrochemical properties of Sakon Nakhon-indigo strain used in the metal–semiconductor–metal (MSM) diode. The fermentation and extraction of our local indigo plant are explained. Indian indigo in the MSM diode is compared in the same conditions of preparation. The electrochemical properties, including the current–voltage (I–V) characteristic, static resistance, and rectification ratio, are discussed. The results show that the electron and hole characteristics and band gap energy of the indigo blue affects the electrochemical properties of the device. Our local MSM diode has a suitable operation between −1 and +3 VMSM with a knee voltage of 1.0 VMSM. Especially, it can produce the highest forward-bias current of about 3.19 mA at linear operation between +2 and +3 VMSM, whereas the review MSM diode is about 2–3 hundred times lower. This shows that this strain has more conductive properties because of its effective electron and hole characteristics obtained by an indigo yield concentration. Therefore, the MSM diode based on Sakon Nakhon-indigo strain is an important role in an electronic semiconductor device for low voltage consumption and high sensitivity. In the future, the molecular characteristics of local indigo may be deeply analyzed to be further developed into a thin-film form used as an organic semiconductor material in several electronic devices.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3