Predicting Road Crash Severity Using Classifier Models and Crash Hotspots

Author:

Islam Md. KamrulORCID,Reza Imran,Gazder UnebORCID,Akter Rocksana,Arifuzzaman MdORCID,Rahman Muhammad MuhiturORCID

Abstract

The rapid increase in traffic volume on urban roads, over time, has altered the global traffic scenario. Additionally, it has increased the number of road crashes, some of which are severe and fatal in nature. The identification of hazardous roadway sections using the spatial pattern analysis of crashes and recognition of the primary and contributing factors may assist in reducing the severity of road traffic crashes (R.T.C.s). For crash severity prediction, along with spatial patterns, various machine learning models are used, and the spatial relations of R.T.C.s with neighboring areas are evaluated. In this study, tree-based ensemble models (gradient boosting and random forest) and a logistic regression model are compared for the prediction of R.T.C. severity. Sample data of road crashes in Al-Ahsa, the eastern province of Saudi Arabia, were obtained from 2016 to 2018. Random forest (R.F.) identifies significant features strongly correlated with the severity of the R.T.C.s. The analysis findings showed that the cause of the crash and the type of collision are the most crucial elements affecting the severity of injuries in traffic crashes. Furthermore, the target-specific model interpretation results showed that distracted driving, speeding, and sudden lane changes significantly contributed to severe crashes. The random forest (R.F.) method surpassed other models in terms of injury severity, individual class accuracies, and collective prediction accuracy when using k-fold (k = 10) based on various performance metrics. In addition to taking into account the machine learning approach, this study also included spatial autocorrelation analysis based on G.I.S. for identifying crash hotspots, and Getis Ord Gi* statistics were devised to locate cluster zones with high- and low-severity crashes. The results demonstrated that the research area’s spatial dependence was very strong, and the spatial patterns were clustered with a distance threshold of 500 m. The analysis’s approaches, which included Getis Ord Gi*, the crash severity index, and the spatial autocorrelation of accident incidents according to Moran’s I, were found to be a successful way of locating and rating crash hotspots and crash severity. The techniques used in this study could be applied to large-scale crash data analysis while providing a useful tool for policymakers looking to improve roadway safety.

Funder

Deanship of Scientific Research in the King Faisal University, Saudi Arabia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3