Experimental Study on the Permeability of Rare Earths with Different Particle Composition for a Novel Heap Leaching Technology

Author:

Ju Wei,Yang JianhuaORCID,Yao Chi,Zhang Xiaobo,Ye Zhiwei,Liu DaORCID

Abstract

In order to solve the problem of vegetation restoration in the traditional heap leaching of rare earths, a novel heap leaching technology is proposed. In the novel technology, leaching liquid is laterally injected into the rare earth pile from the side end so that vegetation restoration can be carried out quickly on the top of the pile. In this study, a laboratory test was performed to investigate the permeability of the ion-adsorbed rare earth pile under lateral liquid injection conditions. Four rare earth samples with varied combinations of the mineral particles at different sizes were adopted in the test to emphatically discuss the influence of the particle composition on permeability. The experimental results show that the permeability of the rare earth pile under the lateral liquid injection conditions is governed by the migration of fine particles. As the hydraulic head of the leaching liquid increases, the fine particles undergo a motion process of stabilization, migration initiation, deposition, and remigration. Accordingly, the permeability coefficient of the rare earth pile exhibits a variation of stabilization, a gradual increase, a re-stabilization, and a re-increase. The fine particle migration and exudation causes the permeability of the rare earth pile to be non-uniform in space. The permeability coefficients near the liquid injection end and the liquid outlet end are much greater than those are at the middle positions of the pile. The particle composition of the rare earth has an important effect on the permeability of the pile. In the rare earth with a combination of coarse and fine particles, preferential flow paths are easy to develop as in this soil, the fine particles easily migrate and they cannot block the pore channels. By contrast, the fine particles find it difficult to migrate, and the permeability coefficient is relatively stable in the fine-medium particle rare earth. This particle composition is conducive to the heap leaching of the rare earth under lateral liquid injection conditions.

Funder

the National Key Research and Development Program of China

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3