Evaluation of the Structural Health Monitoring Results of the Applied Fiber Optics in the Pile-Raft Foundations of a High-Rise Building

Author:

Buranbayeva AigerimORCID,Zhussupbekov Askar,Sarsembayeva AsselORCID,Omarov AbdullaORCID

Abstract

Fiber optics are increasingly being used in structural health monitoring applications. In addition to the well-known advantages, they most reliably transmit the stress–strain condition of the structure in the long term. This article presents the results of structural health monitoring on the embedding of fiber optics in the upper layer of the raft over the entire area of a high-rise building in Astana city (Kazakhstan), including the 75-storey 320 m block R. Temperature and strain data were collected constantly via a distributed fiber optic strain sensing system (DFOSS). The analysis of strains in fiber optic chainage indicated that the compression strains were observed over the entire area of the building, with values from −20 to −40 µε and with progression of the compression loaded up to −80 µε along the core wall closer to the eastern facade of the building. Tension strains were concentrated along the extreme axes of the building, with a predominance in the southern part of the R block, as well as in the immediate vicinity of the columns, in a range of −20 to −40 µε, with separate spots from −40 to −60 µε. Individual patches of tension strains near the columns have been explained by the increased deflection of the raft under the application of a concentrated load (columns). Fiber optic monitoring results at the time of testing did not exceed the permitted values for high-rise building operation; however, they characterized the general picture of the strain in the raft plane and made it possible to determine the initiation of cracks in concrete at an early stage.

Funder

the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3