Clustering Method of Large-Scale Battlefield Airspace Based on Multi A * in Airspace Grid System

Author:

Cai MingORCID,Wan Lujun,Jiao Zhiqiang,Lv Maolong,Gao Zhizhou,Qi Duo

Abstract

Aiming at the problem of the wide range and great difficulty in the future of battlefield airspace control, based on the unique advantages of an airspace grid system in an airspace grid representation and time–space binary computing, this paper designs a pre-clustering method for mission airspace based on airspace location correlation under the condition of future large-scale air combat missions in order to realize the block control of battlefield airspace. This method reduces the whole 3D battlefield space projection to a 2D plane and regards the task airspace projection as “obstacles” in the task area; Multi-A * algorithm is used to generate the airspace clustering line surrounding the task airspace, and the airspace association clustering problem is transformed into a multiple “start point-end point” path planning problem with autonomous optimization. Through the experiment, it was found that clustering the airspace can effectively improve the management and control efficiency of large-scale battlefield airspace.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference76 articles.

1. On the concept of airspace;Zhang;J. Beijing Univ. Aeronaut. Astronaut. (Soc. Sci. Ed.),2021

2. Zhu, Y.J. Study on the Process of European Airspace Integration. Master’s Thesis, 2013.

3. Procedures for Air Navigation Services: Aircraft Operations. ICAO DOC 8168, 2006.

4. Thipphavong, D.P., Apaza, R., Barmore, B., Battiste, V., Burian, B., Dao, Q., Feary, M., Go, S., Goodrich, K.H., and Homola, J. Urban air mobility airspace integration concepts and considerations. Proceedings of the 2018 Aviation Technology, Integration, and Operations Conference.

5. Army Airspace Management during Large-Scale Combat Operations. 2022.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3