Hybrid Inductive Model of Differentially and Co-Expressed Gene Expression Profile Extraction Based on the Joint Use of Clustering Technique and Convolutional Neural Network

Author:

Babichev SergiiORCID,Yasinska-Damri LyudmylaORCID,Liakh IgorORCID,Škvor JiříORCID

Abstract

The development of hybrid models focused on gene expression data processing for the allocation of differentially expressed and mutually correlated genes is one of the current directions in modern bioinformatics. The solution to this problem can allow us to improve the effectiveness of existing systems for complex diseases diagnosis based on gene expression data analysis on the one hand and increase the efficiency of gene regulatory network reconstruction procedures by more careful selection of genes by considering the type of disease on the other hand. In this research, we propose a stepwise procedure to form the subsets of mutually correlated and differentially expressed gene expression profiles (GEP). Firstly, we allocate an informative GEP in terms of statistical and entropy criteria using the Harrington desirability function. Then, we performed cluster analysis using SOTA and spectral clustering algorithms implemented within the framework of objective clustering inductive technology. The result of this step’s implementation is a set of clusters containing co- and differentially expressed GEPs. Validation of the model was performed using a one-dimensional two-layer convolutional neural network (CNN). The analysis of the simulation results has shown the high efficiency of the proposed model. The clusters of GEPs formed based on the clustering quality criteria values allowed us to identify the investigated objects with high accuracy. Moreover, the simulation results have also shown that the hybrid inductive model based on the spectral clustering algorithm is more effective in comparison with the use of the SOTA clustering algorithm in terms of both the complexity of the formed optimal cluster structure and the classification accuracy of the objects that contain the allocated gene expression data as attributes. The proposed hybrid inductive model contributes to increasing objectivity during the formation of the subsets of differentially and co-expressed gene expression profiles for further their application in various disease diagnosis systems and for gene regulatory network reconstruction.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3