Point-by-Point-Contact-Based Approach to Compute Position and Orientation between Parts Assembled by Multiple Non-Ideal Planes

Author:

Zhang Jian,Qiao Lihong,Huang ZhichengORCID,Anwer NabilORCID

Abstract

Position and orientation deviations (PODs), being affected by surface deviations, occur after parts are assembled, which directly affects the performance of mechanical products. Moreover, mechanical parts are generally assembled with multiple constraint planes, and the generated PODs are influenced by the type of positioning. Therefore, the PODs of multiple planes should be computed in the design stage according to the predicted surface deviations, to control the product performance. However, even though the POD computation of multiple planes has been researched, the effects of surface deviations and multiple types of positioning cannot be considered simultaneously. To address this problem, this study proposes a point-by-point-contact-based approach. The six-point positioning principle is employed to determine the possible number of contact points on each mating plane. The surface deviations are modeled from the perspective of manufacturing errors. Furthermore, the contact points on each mating plane are determined successively using both the strategies of progressively approaching position and of the orientation and recursion of contact points. As a result, the PODs are acquired. The feasibility and usefulness of the proposed approach are verified through a case study. Herein, effects of surface deviations and multiple types of positioning on PODs are unified as contact point variations. Consequently, this approach is expected to assist with accurately controlling the POD influence on the performance of mechanical products in the design stage.

Funder

National Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3