Sloshing of Liquid in a Cylindrical Tank with Multiple Baffles and Considering Soil-Structure Interaction

Author:

Sun YingORCID,Zhou Ding,Wang JiadongORCID,Gu ZhenyuanORCID,Qian WangpingORCID

Abstract

In this study, the liquid sloshing in a cylindrical tank considering soil–structure interaction and undergoing horizontal excitation is investigated analytically. Multiple rigid annular baffles are positioned on the rigid wall to mitigate the liquid sloshing. Firstly, combined with the subdomain partition method for sloshing, the complex liquid domain is partitioned into simple subdomains with the single condition for boundary. Based on continuity conditions of velocity and pressure as well as the linear sloshing equation for free surface, the exact solution for convective velocity potential is derived with high accuracy. By yielding the similar hydrodynamic shear and moment as those of the original system, a mechanical model is developed to describe continuous sloshing, and parameters of the model are given in detail. Then, by means of the least squares approach, the Chebyshev polynomials are utilized to fit impedances for the circular surface foundation. A lumped parameter model is employed to represent influences of soil on the superstructure. Finally, by using the substructure method, a coupling model of the soil–tank system is developed to simplify the dynamic analysis. Comparison investigations are carried out to verify the effectiveness of the model. Detailed sloshing characteristics and dynamic responses of sloshing are analyzed with regard to different baffle sizes and positions as well as soil parameters, respectively. The novelty of the present study is that an equivalent analytical model for the soil–foundation–tank–liquid system with multiple baffles is firstly obtained and it allows the dynamic behaviors of the coupling system to be investigated with high computation efficiency and acceptable accuracy.

Funder

National Natural Science Foundation of China

Scientific Research Starting Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3