Abstract
Various commercial auto-contouring solutions have emerged over past few years to address labor-intensiveness, and inter- and intra-operator variabilities issues of traditional manual anatomy contouring for head and neck (H&N) radiation therapy (RT). The purpose of this study is to compare the clinical performances between RaySearch Laboratories deep learning (DL) and atlas-based auto-contouring tools for organs at risk (OARs) segmentation in the H&N RT with the manual contouring as reference. Forty-five H&N computed tomography datasets were used for the DL and atlas-based auto-contouring tools to contour 16 OARs and time required for the segmentation was measured. Dice similarity coefficient (DSC), Hausdorff distance (HD) and HD 95th-percentile (HD95) were used to evaluate geometric accuracy of OARs contoured by the DL and atlas-based auto-contouring tools. Paired sample t-test was employed to compare the mean DSC, HD, HD95, and contouring time values of the two groups. The DL auto-contouring approach achieved more consistent performance in OARs segmentation than its atlas-based approach, resulting in statistically significant time reduction of the whole segmentation process by 40% (p < 0.001). The DL auto-contouring had statistically significantly higher mean DSC and lower HD and HD95 values (p < 0.001–0.009) for 10 out of 16 OARs. This study proves that the RaySearch Laboratories DL auto-contouring tool has significantly better clinical performances than its atlas-based approach.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献