Clinical Evaluation of Deep Learning and Atlas-Based Auto-Contouring for Head and Neck Radiation Therapy

Author:

Ng Curtise K. C.ORCID,Leung Vincent W. S.ORCID,Hung Rico H. M.ORCID

Abstract

Various commercial auto-contouring solutions have emerged over past few years to address labor-intensiveness, and inter- and intra-operator variabilities issues of traditional manual anatomy contouring for head and neck (H&N) radiation therapy (RT). The purpose of this study is to compare the clinical performances between RaySearch Laboratories deep learning (DL) and atlas-based auto-contouring tools for organs at risk (OARs) segmentation in the H&N RT with the manual contouring as reference. Forty-five H&N computed tomography datasets were used for the DL and atlas-based auto-contouring tools to contour 16 OARs and time required for the segmentation was measured. Dice similarity coefficient (DSC), Hausdorff distance (HD) and HD 95th-percentile (HD95) were used to evaluate geometric accuracy of OARs contoured by the DL and atlas-based auto-contouring tools. Paired sample t-test was employed to compare the mean DSC, HD, HD95, and contouring time values of the two groups. The DL auto-contouring approach achieved more consistent performance in OARs segmentation than its atlas-based approach, resulting in statistically significant time reduction of the whole segmentation process by 40% (p < 0.001). The DL auto-contouring had statistically significantly higher mean DSC and lower HD and HD95 values (p < 0.001–0.009) for 10 out of 16 OARs. This study proves that the RaySearch Laboratories DL auto-contouring tool has significantly better clinical performances than its atlas-based approach.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3