Guest Molecules with Amino and Sulfhydryl Groups Enhance Photoluminescence by Reducing the Intermolecular Ligand-to-Metal Charge Transfer Process of Metal–Organic Frameworks

Author:

Zhao YuewuORCID,Wang JineORCID,Pei Renjun

Abstract

Micron-sized metal–organic framework (MOF) sheets were prepared using organic molecules with aggregation-induced emission (AIE) properties as ligands. The intermolecular ligand-to-metal charge transfer (LMCT) process occurs in MOF structures, resulting in the disappearance of the matrix coordination-induced emission (MCIE) effect and emergence of the aggregation-caused quenching (ACQ) effect. Here, we demonstrate that molecules with electron donors can compete with the LMCT process in MOF structures, thereby changing the transfer path of the excitation energy and returning it to the ground state, mainly in the form of fluorescence. Organic molecules with amino or sulfhydryl groups can act as effective electron donors, reducing the LMCT process and causing the MCIE effect of the MOF sheet. The coexistence of amino and sulfhydryl groups will strongly inhibit the LMCT process of the MOF sheet, thereby greatly enhancing the MCIE effect. Therefore, these types of molecules can be used to regulate the photoluminescence intensity of AIE-based MOF materials. In addition, there are some organic molecules with multiple carboxyl or hydroxyl groups which can produce similar effects. Finally, it was confirmed that the intermolecular LMCT process is highly sensitive, and the MOF sheet showed distinguishable fluorescence results even with the addition of small molecules in the amount of 10−9 M. Thus, it is a feasible idea to use the fluorescence changes induced by the LMCT process as a sensitive sensing method for small molecules.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

China Postdoctoral Science Foundation

Jiangsu Planned Projects for Postdoctoral Research Funds

Basic Research Pilot Project in Suzhou

Science Foundation of Jiangxi Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3