Experimental Investigation and Optimization of a Glazed Transpired Solar Collector

Author:

Teodosiu Catalin IoanORCID,Sima Catalin,Croitoru Cristiana,Bode FlorinORCID

Abstract

Solar air collectors are increasingly used nowadays due to their important potential in reducing the energy consumption of buildings. In this context, glazed transpired solar collectors (GTCs) represent an interesting solution, but this type of solar air collector is less studied. Consequently, the objective of this work is to thoroughly assess the performance of a GTC prototype under real long-term climatic conditions. First, the design of the GTC is optimized based on methodically experimental tests. The results show that the GTC configuration with a 30 mm air gap among the absorber and the glazing leads to improved heat transfer efficiency and superior global effectiveness, regardless of airflow rates through the solar air collector. This optimized GTC configuration is further studied by integration within the façade of a full-scale experimental building (container-type, light structure). Comparative experimental studies are then carried out concerning the heating energy consumption and ventilation load of the experimental building without/with GTC implemented in the ventilation system, under Bucharest real weather conditions. The data achieved indicate that the GTC prototype is capable of substantially reducing the ventilation load: up to 25% for low solar radiation (below 200 W/m2) and over 50% (achieving even 90%) for moderate solar radiation (between 250 and 380 W/m2). Finally, for high solar radiation (over 400 W/m2), the GTC outlet air temperature exceeds the interior temperature set-point (22 °C) of the experimental building.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference56 articles.

1. Energy Prices: Commission Proposes Emergency Market Intervention to Reduce Bills for Europeans—Press Release 14 September 2022, Brussels. 2022.

2. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Off. J. Eur. Union, 2009. 140.

3. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources. Off. J. Eur. Union, 2018. 328.

4. Share of Energy Consumption from Renewable Sources in Europe. 2022.

5. Moschella, M., Tucci, M., Crisostomi, E., and Betti, A. A Machine Learning Model for Long-Term Power Generation Forecasting at Bidding Zone Level. Proceedings of the 2019 IEEE Pes Innovative Smart Grid Technologies Europe (ISGT-Europe) Conference.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3