Securely Computing the Manhattan Distance under the Malicious Model and Its Applications

Author:

Liu Xin,Liu Xiaomeng,Zhang Ruiling,Luo Dan,Xu Gang,Chen XiuboORCID

Abstract

Manhattan distance is mainly used to calculate the total absolute wheelbase of two points in the standard coordinate system. The secure computation of Manhattan distance is a new geometric problem of secure multi-party computation. At present, the existing research secure computing protocols for Manhattan distance cannot resist the attack of malicious participants. In the real scene, the existence of malicious participants makes it necessary to study a solution that can resist malicious attacks. This paper first analyzes malicious attacks of the semi-honest model protocol of computing Manhattan distance and then designs an advanced protocol under the malicious model by using the Goldwasser–Micali encryption system and Paillier encryption algorithm, and utilizing some cryptographic tools such as the cut-choose method and zero-knowledge proof. Finally, the real/ideal model paradigm method is used to prove the security of the malicious model protocol. Compared with existing protocols, the experimental simulation shows that the proposed protocol can resist malicious participant attacks while maintaining high efficiency. It has practical value.

Funder

National Natural Science Foundation of China

Inner Mongolia Natural Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum Secure Clockwise Sorting;International Journal of Theoretical Physics;2024-05-30

2. Secure parallel Outsourcing Scheme for Large-scale Matrix Multiplication on Distributed Cloud Servers;2023 IEEE 29th International Conference on Parallel and Distributed Systems (ICPADS);2023-12-17

3. Secure Multi-Party Computation of Graphs’ Intersection and Union under the Malicious Model;Electronics;2023-01-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3