Influence of Stress Anisotropy on Petrophysical Parameters of Deep and Ultradeep Tight Sandstone

Author:

Zhang Hui,Xu KeORCID,Zhang Binxin,Yin Guoqing,Wang Haiying,Wang Zhimin,Li Chao,Lai Shujun,Qian Ziwei

Abstract

Rock mechanics parameters control the distribution of in situ stress and natural fractures, which is the key to sweet spot evaluation in reservoir engineering. Combined with the distribution of in situ stress, an experimental scheme of stress on rock physical parameters was designed. The results show that rock sonic velocity is extremely sensitive to water saturation under overburden pressure. At ultrasonic frequencies, when the water saturation increases from 0% to 80%, the P-wave velocity increases first and then decreases. When the water saturation continues to increase to 100%, the P-wave velocity increases. This is due to the effect of water saturation on the shear modulus. Saturation is negatively correlated with shear wave velocity and resistivity. Different minerals have different control effects on the rock P-S wave velocity ratio. Quartz content plays a dominant role, and the two are negatively correlated, followed by feldspar and clay, and the two are positively correlated with the P-S wave ratio. The confining pressure, axial compression, stress ratio and burial depth are positively correlated with the P-S wave and negatively correlated with the P-S wave ratio; in descending order, the influencing factors of stress on the petrophysical parameters are maximum stress ratio > confining pressure > axial pressure.

Funder

Major National Science and Technology Project

Major Science and Technology Project of PetroChina Company

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3