Laboratory Experimental Study on Polymer Flooding in High-Temperature and High-Salinity Heavy Oil Reservoir

Author:

Zhang Fujian,Jiang Youwei,Liu PengchengORCID,Wang Bojun,Sun Shuaishuai,Hua Daode,Zhao Jiu

Abstract

Polyacrylamide (HPAM) and other traditional polymers have poor temperature resistance and salinity tolerance and do not meet the needs of high-temperature and high-salinity reservoirs. In this study, a new temperature-resistant and salinity-tolerant polymer QJ75-39 was synthesized using acrylamide (AM) as a hydrophilic monomer, 1-acrylamide-2-methylpropanesulfonic acid (AMPS) and N-vinylpyrrolidone (NVP) as functional monomers and DS-16 as a hydrophobic monomer. Through laboratory experiments, the properties (temperature resistance, salinity tolerance and aging stability), polymer injection and core displacement effect of the polymer were studied. The experimental results showed that the new polymer could meet the needs of polymer flooding technology in high-temperature and high-salinity reservoirs. Experiments showed that the polymer had a temperature resistance of 95 °C and a salinity tolerance of 1.66 × 105 mg/L. When the temperature was 95 °C and the TDS was 55,376.8 mg/L, the viscosity of the polymer was 31.3 mPa s, and the viscosity remained above 30 mPa·s after aging for 60 days. The polymer had good injectivity between 300 and 600 mD, and the injection pressure could reach equilibrium quickly. The oil recovery effectively increased with the grsowth in the amount of injected polymer. When the injection amount was 0.5 PV, the enhanced oil recovery was 20.65%. This study is of great significance for the application and popularization of polymer flooding technology in high-temperature and high-salinity reservoirs.

Funder

National Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference42 articles.

1. Study on the design and synthesis of amphiphilic polymers and their synergistic systems(XII) Enhanced oil recovery;China Surfactant Deterg. Cosmet.,2020

2. Wang, L., Wei, J., Chen, Y., Jia, S., Wang, Y., Qiao, X., and Xu, L. (2022). Injectability of Partially Hydrolyzed Polyacrylamide Solutions Improved by Anionic-Nonionic Surfactant in Medium and Low Permeability Reservoirs. Energies, 15.

3. Experimental research on recovery efficiency improved by polymer flooding after low salinity water flooding;Fault Block Oil Gas Field,2019

4. Study on enhanced oil recovery technology after polymer flooding in offshore oilfield;Pet. Geol. Recovery Effic.,2015

5. Scott, A.J., Romero-Zerón, L., and Penlidis, A. (2020). Evaluation of Polymeric Materials for Chemical Enhanced Oil Recovery. Processes, 8.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3