Normal-Weight Concrete with Improved Stress–Strain Characteristics Reinforced with Dispersed Coconut Fibers

Author:

Shcherban’ Evgenii M.ORCID,Stel’makh Sergey A.ORCID,Beskopylny Alexey N.ORCID,Mailyan Levon R.,Meskhi BesarionORCID,Shilov Alexandr A.ORCID,Chernil’nik AndreiORCID,Özkılıç Yasin OnuralpORCID,Aksoylu CeyhunORCID

Abstract

According to the sustainable development concept, it is necessary to solve the issue of replacing fiber from synthetic materials with natural, environmentally friendly, and cheap-to-manufacture renewable resources and agricultural waste. Concrete is the primary material for which fibers are intended. Therefore, the use of vegetable waste in concrete is an essential and urgent task. Coconut fiber has attracted attention in this matter, which is a by-product of the processing of coconuts and makes it relevant. This work aims to investigate the experimental base for the strength properties of dispersed fiber-reinforced concrete with coconut fibers, as well as the influence of the fiber percentage on the mechanical, physical, and deformation characteristics. The samples were made of concrete with a compressive strength at 28 days from 40 to 50 MPa. The main mechanical characteristics such as strength in compression (cubic and prismatic) and tension (axial and bending), as well as the material’s compressive and tensile strains, were investigated. The percentage of reinforcement with coconut fibers was taken in the range of 0% to 2.5% with an increment of 0.25 wt.%. Tests were carried out 28 days after the manufacture. The microstructure of the resulting compositions was investigating using the electron microscopy method. The most rational percentage of coconut fibers was obtained at 1.75%. The increase in mechanical indicators was 24% and 26% for compression and axial compression, respectively, and 42% and 43% for tensile bending and axial tension, respectively. The ultimate strains in compression were raised by 46% and in tension by 51%. The elastic modulus was increased by 16%.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3