A Real-Time Remote Respiration Measurement Method with Improved Robustness Based on a CNN Model

Author:

Hwang Hyeonsang,Lee KunyoungORCID,Lee Eui ChulORCID

Abstract

Human respiration reflects meaningful information, such as one’s health and psychological state. Rates of respiration are an important indicator in medicine because they are directly related to life, death, and the onset of a serious disease. In this study, we propose a noncontact method to measure respiration. Our proposed approach uses a standard RGB camera and does not require any special equipment. Measurement is performed automatically by detecting body landmarks to identify regions of interest (RoIs). We adopt a learning model trained to measure motion and respiration by analyzing movement from RoI images for high robustness to background noise. We collected a remote respiration measurement dataset to train the proposed method and compared its measurement performance with that of representative existing methods. Experimentally, the proposed method showed a performance similar to that of existing methods in a stable environment with restricted motion. However, its performance was significantly improved compared to existing methods owing to its robustness to motion noise. In an environment with partial occlusion and small body movement, the error of the existing methods was 4–8 bpm, whereas the error of our proposed method was around 0.1 bpm. In addition, by measuring the time required to perform each step of the respiration measurement process, we confirmed that the proposed method can be implemented in real time at over 30 FPS using only a standard CPU. Since the proposed approach shows state-of-the-art accuracy with the error of 0.1 bpm in the wild, it can be expanded to various applications, such as medicine, home healthcare, emotional marketing, forensic investigation, and fitness in future research.

Funder

Sangmyung University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3