Numerical Study of Lid-Driven Square Cavity Flow with Embedded Circular Obstacles Using Spectral/hp Element Methods

Author:

Zhang JianmingORCID,Xiao Bo,Yang Wensheng

Abstract

We show a successful numerical study of lid-driven square cavity flow with embedded circular obstacles based on the spectral/hp element methods. Various diameters of embedded two-dimensional circular obstacles inside the cavity and Reynolds numbers Re (from 100 to 5000) are considered. In order to verify the effectiveness and accuracy of the current methods, numerical results are investigated by comparing with those available in the literature obtained by the moving immersed boundary method (MIBM) and the lattice Boltzmann method (LBM). The present spectral/hp element methods have been not only successfully applied to study and visualize the primary and induced vortices but also capture new vortices on the lower right, upper left and upper right positions of the circular obstacle when Reynolds number Re = 100 and Re = 5000, which is not observed in the lattice Boltzmann method. The current data and figures are in good agreement with the published results. The results of the present study show that the spectral/hp element methods are effective and accurate in simulation of lid-driven cavity flow with embedded circular obstacles, and the present methods have the following advantages: less preprocesses required and high-resolution characteristics.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference28 articles.

1. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method;J. Comput. Phys.,1982

2. An efficient Multigrid Approach to Solving Highly Recirculating Flows;Comput. Phys.,1995

3. Stream Function-Vorticity Driven Cavity Solutions Using p Finite Elements;Comput. Phys.,1997

4. Benchmark Spectral Results on the Lid-Driven Cavity Flow;Comput. Phys.,1998

5. A new paradigm for solving Navier-stokes equations, streamfunction-velocity formulation;J. Comput. Phys.,2005

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3