The Use of the Forced Frequency of a Bridge Due to a Truck Fleet for Estimating Stiffness Losses at Low Speed

Author:

González ArturoORCID,Feng KunORCID,Casero MiguelORCID

Abstract

The influence of traffic loads on the dynamic features of a bridge is an external factor that can hinder the true condition of the structure. This paper aims to effectuate a shift in the way this factor is viewed. If the interaction between vehicle and bridge is modeled using the finite element method, the response is based on mass, stiffness, and damping matrices of a coupled vehicle-bridge system that vary with the location of the load at each point in time. The time-varying forced frequencies of a beam bridge model due to a fleet of 3-axle trucks based on eigenvalue analysis (i.e., derived from the matrices of the coupled system) are compared to those obtained using dynamic transient analysis (i.e., derived from the frequency content of the acceleration response of the beam due to a truck crossing). Truck properties are randomly varied within a realistic range to obtain a pattern for the forced vibration due to a truck fleet traveling at an ideal speed of 1 m/s on a 15 m bridge with a smooth surface, and at 10 m/s on a 30 m bridge. These patterns reveal a trend that allows for locating and quantifying the stiffness loss associated with a crack using only the forced frequency. The implementation of this methodology requires the installation of accelerometers on the bridge, and a nearby weigh-in-motion system to identify the traffic fleet of interest. High requirements for frequency resolution limit the application to bridges located on low speed routes.

Funder

Science Foundation Ireland

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3