Abstract
Reconfigurable intelligent surface (RIS) has been envisioned as one of the promising solutions for enhancing signal transmissions in high-speed communications (HSC). In this paper, we present a time-varying channel model with distance-dependent Rician factors for the RIS-assisted HSC. Our model not only contains Rayleigh components and Doppler shift (DS) terms but also distance-dependent Rician factors, for characterizing time-varying features. In particular, we show that when the vehicle is far from the base station and the RIS, the channel contains only Rayleigh fading. However, when they are close enough, the channel can be considered as a light-of-sight channel. Based on the proposed model, it is proven that using RIS phase shift optimization, the DS of the cascaded links can be aligned with the DS of the direct link; and if the direct link is blocked, the DS can be removed entirely. Furthermore, we derive the closed-form expressions for the ergodic spectral efficiency and the outage probability of the proposed system. Besides, it is observed that the deployment strategy also affects the system performance. Simulation results validate all analyses.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献