Investigation of Potential Material Inhomogeneity in the Magnetically Detected Neutron-Irradiation-Generated Structural Degradation of Nuclear Reactor Pressure Vessel Steel

Author:

Vértesy GáborORCID,Gasparics AntalORCID,Szenthe Ildikó

Abstract

A novel nondestructive method called magnetic adaptive testing has been previously applied to detect the neutron-irradiation-generated structural changes in reactor pressure vessel steel material. This method has been found to be a useful tool for this purpose, and good correlation—as a tendency—has been found between the estimated ductile-to-brittle transition temperature and magnetic parameters. However, a significant scattering of measured points was also observed for the investigated set of Charpy specimens. The main result of the work was that by magnetic selection of samples, the scatter can be notably reduced. As a conclusion, the magnetically measured parameters seemed to be precise and reliable for the detection of embrittlement of the reactor pressure vessel steel, with lower scattering of points than in the conventionally used destructive mechanical characteristics (ductile-to-brittle transition temperature). This result is surprising and needs further verification. The purpose of the present work is to repeat the measurement on irradiated reactor steel blocks. In this work, instead of the DBTT transition temperature, individually measured Vickers hardness (VH) data were used to help characterize the mechanical properties of the material. The so-called “property transformation” is a known and applied technique in the nuclear industry. The mechanical property characterized by the transition temperature cannot be determined individually for each specimen; instead, it can be obtained only on a set of samples by statistical fitting. Therefore, the individually measured Vickers hardness values can be utilized in order to predict the individual transition temperature values by the help of the property transformation technique. In this paper, however, not these derived transition temperature values, but their origins, the Vickers hardness values, are studied in a direct manner. The same behavior of blocks was observed as in the case of Charpy specimens, which is considered to validate the previously published results. As a possible reason for the scattering of points, large magnetic inhomogeneity of samples cut even from the same block was also proved. The magnetic parameters and Vickers hardness correlate well with each other. This result justifies the potential future application of magnetic techniques in practice aimed at the regular inspection of nuclear reactors.

Funder

Euratom

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference14 articles.

1. Koutsky, J., and Kocık, J. (1994). Radiation Damage of Structural Materials, Elsevier.

2. Tsvetkov, P. (2011). Nuclear Power—Control, Reliability and Human Factors, IntechOpen Limited. Available online: http://www.intechopen.com/articles/show/title/non-destructive-testingfor-ageing-management-of-nuclear-power-components.

3. Monitoring the embrittlement of reactor pressure vessel steels by using the Seebeck coefficient;J. Nucl. Mater.,2009

4. Ultrasonic attenuation, microstructure and ductile to brittle transition temperature in Fe-C alloys;Mater. Eval.,1993

5. Kronmüller, H., and Fähnle, M. (2003). Micromagnetism and the Microstructure of Ferromagnetic Solids, Cambridge University Press.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3