Author:
Chen Jilin,Han Hongwei,Teng Rui,Qin Tong
Abstract
Aerocapture maneuvers refer to a single atmospheric crossing to deplete orbital energy and establish a closed orbit. During the atmospheric flight, adjusting the spacecraft’s vertical lift component in an optimal manner, bang-bang bank control, will minimize the propulsion fuel consumption required to establish the target orbit. However, such methods have been suffering from the performance’s oversensitivity to the control’s instantaneous switching time and poor robustness. To address these problems, we propose a new numerical predictor-corrector guidance algorithm based on the saturation function profile in this paper. The saturation function is used to basically simulate the bang-bang control structure, which enhances the algorithm’s robustness by reducing its dependence on the relevant parameters without losing too much optimality. Monte Carlo simulations in both Earth and Mars scenarios demonstrate the robustness, accuracy, and near-optimal performance of the proposed guidance method.
Funder
National Natural Science Foundation of China
Beijing Institute of Technology Research Fund Program for Young Scholars
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献