Investigation of the Mechanical Behaviour of Lingulid Sandstone Emphasizing the Influence from Pre-Existing Structural Defects—Part 2: Dynamic Testing and Numerical Modelling

Author:

Forquin Pascal,Saadati Mahdi,Saletti DominiqueORCID,Lukic Bratislav,Schiaffini Federico,Weddfelt Kenneth,Larsson Per-LennartORCID

Abstract

In the present study, dynamic experiments are developed to investigate the induced damage modes when Lingulid sandstone is subjected to dynamic and impact loading. To do so, a series of spalling tests were carried out in order to investigate the material response at high strain tension rates. This illustrates how structural defects influence the wave propagation in the tested sample, the loading-rate, and the resulting tensile strength. In addition, edge-on-impact tests were performed using both open and sarcophagus configurations. An ultra-high-speed image recording system is used in an open configuration for time-resolved visualisation of damage. The sarcophagus configuration gives the opportunity to visually compare the state of the cracking pattern prior to and after the test. This experimental work points-out that the pre-existing structural defects play a major role on impact loading. This is because the opening of cracks in mode I and the sliding of cracks in mode II are favoured, and by also restricting the fragmentation of the material caused by less critical defects. Next, a numerical simulation, only involving the so-called KST model, is presented to highlight the loading that would be applied to the target in the absence of structural defects. It demonstrates that in such a situation, a wide network of radial cracks would be expected. Finally, a numerical study involving the KST-DFH model illustrates the influence of a structural defect on the amount of damage generated in the target.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3