Modified Biochar as a More Promising Amendment Agent for Remediation of Pesticide-Contaminated Soils: Modification Methods, Mechanisms, Applications, and Future Perspectives

Author:

Pan Lixuan,Mao Liangang,Zhang Haonan,Wang Pingping,Wu Chi,Xie Jun,Yu Bochi,Sial Muhammad UmairORCID,Zhang Lan,Zhang Yanning,Zhu Lizhen,Jiang HongyunORCID,Zheng Yongquan,Liu Xingang

Abstract

With the acceleration of the process of agricultural modernization, many pesticides (insecticides, fungicides, and herbicides) are applied to the field and finally brought into the soils, causing serious damage to the environment. The problem of pesticide pollution has become increasingly prominent. This has highlighted the urgent need for effective and efficient remediation treatment technology for pesticide-contaminated soils. Biochar has a high specific surface area, high porosity, and strong adsorption capacity, making it a soil amendment agent and carbon fixation agent that can improve soil health and enhance adsorption capacity for pesticides to remediate contaminated soils. Recently, efforts have been made to enhance the physicochemical and adsorption properties of biochar by preparing modified biochar, and it has been developed to expand the application of biochar. Specifically, the following aspects were reviewed and discussed: (i) source and modification methods of biochar for pesticide remediation; (ii) the effect of biochar on the environmental fate of remediating pesticides; (iii) the effect of biochar on pesticide-contaminated soils; and (iv) potential problems for the large-scale promotion and application of biochar remediation of pesticides. In conclusion, this review may serve as a reference and guide for pesticide remediation, hence reducing the environmental concerns associated with pesticides in soil.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3