Mode of Action of the Natural Product Allicin in a Plant Model: Influence on the Cytoskeleton and Subsequent Shift in Auxin Localization

Author:

Noll Ulrike,Schreiber Miriam,Hermanns Monika,Mertes Christopher A.,Slusarenko Alan J.ORCID,Gruhlke Martin C. H.ORCID

Abstract

Allicin is a defense substance produced by garlic cells when they are injured. It is a redox-active thiosulfinate showing redox-activity with a broad range of dose-dependent antimicrobial and biocidal activity. It is known that allicin efficiently oxidizes thiol-groups, and it has been described as a redox toxin because it alters the redox homeostasis in cells and triggers oxidative stress responses. Allicin can therefore be used as a model substance to investigate the action of thiol-specific prooxidants. In order to learn more about the effect of allicin on plants, we used pure synthetized allicin, and studied the influence of allicin on organelle movement in Tradescantia fluminensis as a cytoskeleton-dependent process. Furthermore, we investigated cytoplasmic streaming in sterile filaments of Tradescantia fluminensis, organelle movement using transgenic Arabidopsis with organelle-specifics GFP-tags, and effects on actin and tubulin in the cytoskeleton using GFP-tagged lines. Tubulin and actin were visualized by GFP-tagging in transgenic lines of Arabidopsis thaliana to visualize the influence of allicin on the cytoskeleton. Since auxin transport depends on recycling and turnover of the PIN protein involving cytoskeletal transport to and from the membrane localization sites, auxin distribution in roots was investigated using of transgenic PIN1–GFP, PIN3–GFP, DR5–GFP and DII–VENUS Arabidopsis reporter lines. Allicin inhibited cytoplasmic streaming in T. fluminensis, organelle movement of peroxi-somesperoxisomes, and the Golgi apparatus in a concentration-dependent manner. It also destroyed the correct root tip distribution of auxin, which probably contributed to the observed inhibition of root growth. These observations of the disruption of cytoskeleton-dependent transport processes in plant cells add a new facet to the mechanism of action of allicin as a redox toxin in cells.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference43 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3