Improved Mask R-CNN Combined with Otsu Preprocessing for Rice Panicle Detection and Segmentation

Author:

Hong Shilan,Jiang Zhaohui,Liu Lianzhong,Wang Jie,Zhou Luyang,Xu Jianpeng

Abstract

Rice yield is closely related to the number and proportional area of rice panicles. Currently, rice panicle information is acquired with manual observation, which is inefficient and subjective. To solve this problem, we propose an improved Mask R-CNN combined with Otsu preprocessing for rice detection and segmentation. This method first constructs a rice dataset for rice images in a large field environment, expands the dataset using data augmentation, and then uses LabelMe to label the rice panicles. The optimized Mask R-CNN is used as a rice detection and segmentation model. Actual rice panicle images are preprocessed by the Otsu algorithm and input into the model, which yields accurate rice panicle detection and segmentation results using the structural similarity and perceptual hash value as the measurement criteria. The results show that the proposed method has the highest detection and segmentation accuracy for rice panicles among the compared algorithms. When further calculating the number and relative proportional area of the rice panicles, the average error of the number of rice panicles is 16.73% with a minimum error of 5.39%, and the error of the relative proportional of rice panicles does not exceed 5%, with a minimum error of 1.97% and an average error of 3.90%. The improved Mask R-CNN combined with Otsu preprocessing for rice panicle detection and segmentation proposed in this paper can operate well in a large field environment, making it highly suitable for rice growth monitoring and yield estimation.

Funder

the Natural Science Major Project for Anhui Provincial University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3