Limited-Angle Computer Tomography with Truncated Projection Artifacts Removal

Author:

Shen Enxiang,Wang Yuxin,Yuan JieORCID,Carson Paul L.

Abstract

Breast cancer is the most common cancer in women and the second most common cancer in the world. Digital breast tomosynthesis (DBT) is an effective medical imaging method. It can reduce the overlap of breast tissue in reconstructed images, which is beneficial to the early detection of breast cancer. DBT uses projection data from a limited range of angles and the simultaneous algebraic reconstruction technique (SART) based reconstruction method. Since the detector’s field of view (FOV) is limited, the updates of the large projection angles in SART cannot include all the voxels of the imaging target, which causes truncated projection artifacts (TPA) at the edges of the image. In this work, we use the images reconstructed by SART to perform re-projection on the virtually expanded detector panel and use a gradient calculation method to compensate for missing projection data to ensure that each update can include all the voxels. Experiments on simulation and human breast demonstrated that TPA can be effectively reduced while retaining the detailed tissue structure, thus improving the image quality at the border and recovering the obscured structural information. It might provide a better imaging result for the consequential clinical diagnosis.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3