Optimization of Screen-Hole-Clearing Devices for Mechanized Residual Film–Impurity Separation

Author:

Xie ChenshuoORCID,Kang Jianming,Peng Qiangji,Wang Xiaoyu,Chen Yingkai,Zhang Chunyan,Zhang Ningning

Abstract

The airflow velocity in some nozzles is low, and the clearing of the nozzle is ineffective because of unreasonable airflow pipe arrangements and the distance from the nozzle to the screen surface of screen-hole-clearing devices for trommel-sieve-type residual film–impurity wind separators. In the present study, the main structure and working parameters affecting the screen hole clogging situation were determined through theoretical analysis and computational fluid dynamics simulations. In addition, a three-factor, three-level quadratic regression orthogonal center of rotation combination test was performed. The distance from the nozzle to the screen surface, fan wind speed, and the number of airflow pipes were selected as test factors, and the ratio of impurities in the residual film and the blockage ratio of the screen holes were selected as the evaluation indexes. The results indicated that the ratio of impurities in the residual film was reduced by 2.42% and the blockage ratio of the screen holes was reduced by 1.92% at a nozzle-to-screen distance of 102 mm, a fan wind speed of 24 m/s, and with four air pipes. The resulting impurity ratio in the film was 5.86%, and the blockage ratio of screen pores was 5.41%. The minimum airflow velocity of 15.8 m/s at each nozzle position of the optimized screen-hole-clearing device satisfied the requirements of screen hole clearing and blockage. Furthermore, the ratio of impurities in the residual film and the blockage ratio of the screen holes remained unchanged during the continuous operation of the device. This indicated that the optimized screen-hole-clearing device had a stable working performance. This study may provide a theoretical framework for the future development of screen-hole--clearing devices.

Funder

National Natural Science Foundation of China Projects

Natural Science Foundation of Shandong Province Key Projects

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference27 articles.

1. Research progress and development prospects of plastic film covering technology in arid areas;Agric. Res. Arid. Areas,2005

2. Characteristics of residual mulching film and residual coefficient of typical crops in North China;Trans. CSAE,2016

3. Review of agricultural plastic mulching and its residual pollution and prevention measures in China;J. Agric. Resour. Environ.,2014

4. Research status and prospect of control technology for residual plastic film pollution in farmland;Trans. Chin. Soc. Agric. Mach.,2017

5. Motion analysis and experiment on spring-tooth mulching plastic film collector;Trans. Chin. Soc. Agric. Mach.,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3